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Key Points:

• The ARTEMIS and Cluster missions observe plasma convection in the magneto-
tail lobes in the far-downstream and near-Earth tail regions.

• Magnetospheric convection can be driven by the solar wind and the associated mag-
netospheric activity.

• Machine learning models can be used to study the potential external driving mech-
anism of the magnetospheric convection.
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Abstract

To quantitatively study the driving mechanisms of magnetospheric convection in
the magnetotail lobes on a global scale, we utilize data from the ARTEMIS spacecraft
in the deep tail and the Cluster spacecraft in the near tail. Previous work demonstrated
that, in the lobes near the Moon, we can estimate the convection by utilizing ARTEMIS
measurements of lunar ions’ velocity. In this paper, we analyze these datasets with ma-
chine learning models to determine what upstream factors drive the lobe convection in
different magnetotail regions and thereby understand the mechanisms that control the
dynamics of the tail lobes. Our results show that the correlations between the predicted
and test convection velocities for the machine learning models (¿0.75) are much better
than those of the multiple linear regression model ( 0.23-0.43). The systematic analy-
sis reveals that the IMF and magnetospheric activity play an important role in influenc-
ing plasma convection in the global magnetotail lobes.

1 Introduction

Characterizing the plasma convection in Earth’s tail regions is important to help
us understand the global magnetospheric dynamics. (S. Haaland et al., 2008, 2009) uti-
lized Cluster data (Escoubet et al., 1997) to show that the plasma convection at 10 RE
downtail has opposite lateral patterns in the southern and northern lobes. For instance,
the convection shows a pattern such that the north-south convection moves towards the
current sheet in the magnetotail. (Ohma et al., 2019) revealed that the asymmetry of
the convection flow could also be affected by magnetic reconnection in the tail, which
relates to magnetospheric activity. (Cao, Halekas, Chu, et al., 2020b) used the two Ac-
celeration, Reconnection, Turbulence, and Electrodynamics of Moon’s Interaction with
the Sun (ARTEMIS) lunar ion data (Angelopoulos, 2011) to show that the dawn-dusk
component of plasma convection velocity near the Moon’s orbit ( 60 RE) has a high cor-
relation with the corresponding component of the upstream Interplanetary Magnetic Field
(IMF). The magnetosphere of the Earth responds to the solar wind flow and IMF, through
the Dungey Cycle driven by dayside magnetic reconnection (J. W. Dungey, 1961). Based
on previous studies, the magnetospheric plasma in both lobes tends to move towards the
central plasma sheet. (Kissinger et al., 2011) showed that variations in solar wind con-
ditions can also control the magnetospheric convection. The magnitude of the convec-
tion velocity is influenced by the upstream solar wind conditions, e.g. solar wind dynamic
pressure, the IMF and its clock angle, and the magnetospheric activity, as measured us-
ing the Dst (disturbance storm time) index.

The Moon has a tenuous exosphere, which is mainly composed of neutrals sourced
from the surface of the Moon via various processes, e.g. solar wind sputtering, and ther-
mal and chemical release (Stern, 1999; Sarantos et al., 2012; Cook et al., 2013; Vorburger
et al., 2014), and micrometeorite impact (Hartle & Killen, 2006; Halekas et al., 2011; Horányi
et al., 2015). Some of the neutral particles can be eventually transformed to same-mass
heavy ions through photoionization, charge exchange, and electron impact ionization (McGrath
et al., 1986; Sarantos et al., 2012; Huebner & Mukherjee, 2015; Zhou et al., 2013). The
motion of lunar ions in the magnetotail lobes reflects their interaction with the exosphere,
the lunar surface, and the ambient environment of the tail lobes.

Compared to other regions such as the solar wind or the magnetosheath where the
ambient plasma density is much higher than that of the lunar ions (Halekas et al., 2011;
Chu, Halekas, et al., 2021), the lunar ion density in the terrestrial magnetotail lobes is
comparable to or even larger than that of the ambient lobe plasma, and the background
flow is commonly sub-Alfvénic (Halekas et al., 2018; Liuzzo et al., 2021). Therefore, the
magnetospheric tail lobes are a unique environment in which to study the dynamics of
the lunar ions. In this scenario, (Cao et al., 2019; Cao, Halekas, Poppe, et al., 2020) an-
alyzed ARTEMIS measurements to find that lunar ions are predominantly accelerated
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by magnetic tension and pressure forces. As a consequence of this process, the lunar ions
are eventually coupled to the ambient plasma convection by the mass loading effect. Ac-
cordingly, the plasma convection in the deep magnetotail lobes can be estimated by mea-
surement of lunar ion motion. This technique allows ARTEMIS to estimate the convec-
tion velocity by utilizing the heavy lunar ions (which have higher energy per charge for
a given convection speed), despite the fact that it cannot typically directly detect the
convection of ambient low-mass ions, given the large positive spacecraft potential in the
tenuous lobe environment (Cao, Halekas, Chu, et al., 2020b, 2020a).

In contrast, the convection velocity in the near-Earth tail regions can be directly
measured by the Electron Drift Instrument (EDI) on the Cluster spacecraft. The EDI
emits electron beams, and detect their return to the spacecraft after one or more gyra-
tions. By continuously tracking the emitted beam, the electron gyro center drift and thus
the convection can be monitored (Paschmann et al., 1997). The EDI measurement of con-
vection velocity is not affected by the low density of ambient plasma (S. Haaland et al.,
2008), and the measurement technique has been extensively validated in the magneto-
tail lobes (Noda et al., 2003; S. E. Haaland et al., 2007; S. Haaland et al., 2008).

Over the past few years, machine learning techniques have been widely used in space
physics and planetary science (Camporeale et al., 2018). For instance, (Kerner et al., 2019)
utilized a machine learning algorithm to detect novel geologic features in multispectral
images of the Martian surface. (Wagstaff et al., 2019) used machine learning methods
to study thermal anomalies, compositional anomalies, and plumes of icy matter from Eu-
ropa’s subsurface ocean. (Nguyen et al., 2019) utilized machine learning techniques to
automatically detect the terrestrial bow shock and magnetopause from in-situ data, and
(Lazzús et al., 2017) used machine learning algorithms to forecast the Dst index of the
Earth. (Kronberg et al., 2020) utilized machine learning techniques to study solar wind
control of energetic particles and X-ray.

In this paper, we used lunar ion data from the ARTEMIS spacecraft to infer lobe
plasma convection velocity near the Moon in the deep magnetotail lobes (˜ 60 RE), EDI
measurements from Cluster to determine the convection velocity in the near-Earth mag-
netotail between 10 – 15 RE, and solar wind and Dst index data from NASA’s OMNI
data set. We analyzed the relationship between magnetotail convection and upstream
solar wind conditions and magnetospheric activity index. Based on the outputs of two
ensemble learning methods: Random Forest and Gradient Boosting Decision Tree (GBDT),
the results confirm that the lobe plasma convection in the tail regions is controlled by
upstream solar wind and magnetospheric activity.

2 Magnetotail Observations and Model Methods

The two spacecraft of the ARTEMIS mission, P1 and P2, have been orbiting the
Moon since mid-2011. We utilized measurements from two of the on-board instruments:
Electrostatic Analyzer (ESA) (McFadden et al., 2008) and Flux Gate Magnetometer (FGM)
(Auster et al., 2008). The ESA measures the ion distribution for energies between a few
eV and 25 keV and the electron distribution for energies between a few eV and up to
30 keV (McFadden et al., 2008). The FGM measures the vector magnetic field at a ca-
dence of 4 sec minimum. The four Cluster spacecraft fly in formation in a high incli-
nation 4x20 RE polar orbit, with apogee in the magnetotail between August - Novem-
ber. From Cluster, we use EDI measurements of the convection in the tail lobes (Paschmann
et al., 1997). Since the measurement regions of the two missions extend from near Earth
to the Moon’s orbit in the magnetotail, the coordinate system utilized in this study is
Geocentric Solar Magnetospheric (GSM), in which the +XGSM axis is defined to be ori-
ented towards the Sun from the center of the Earth, the +ZGSM axis towards the di-
rection such that XZ plane contains the geomagnetic dipole axis, and the +YGSM axis
completes the right-handed system. The data utilized in this study contains over 240,000
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Cluster data points in the near-Earth tail regions and over a few thousand ARTEMIS
data points in the deep tail lobe regions near the Moon’s orbit. The near-Earth mea-
surement by the Cluster spacecraft was limited to be within -8 RE ¡ YGSM ¡ +8 RE and
+8 RE ¡ ZGSM ¡ +16 RE for the northern lobe and be within -8 RE ¡ YGSM ¡ +8 RE
and -16 RE ¡ ZGSM ¡ -8 RE for the southern lobe (S. Haaland et al., 2008). The mea-
surements made in the deep tail lobes typically reveal a dominant positive or negative
Bx component, which indicates the northern or southern lobes, respectively. As discussed
in (Cao, Halekas, Chu, et al., 2020b), since the mass loading effect couples the lunar ions
to the ambient plasma convection, the motion of lunar ions serves as an approximate tracer
of the convection patterns in the tail lobes. More details about this method can be found
in (Cao, Halekas, Poppe, et al., 2020; Cao, Halekas, Chu, et al., 2020b, 2020a; Cao et al.,
2021).

The machine learning techniques we utilized in this study include random forest
and GBDT, which are ensemble learning models (Friedman et al., 2001). The basic prin-
ciple of this category of model is to integrate a group of weak learners into a strong learner
in order to obtain a better performance, where the weak learner represents a single de-
cision tree in the models. In contrast to a weak learner that performs at least better than
random guessing, a strong learner is a model doing the prediction work as well as pos-
sible compared to the test dataset. Both random forest and GBDT utilize a data struc-
ture called decision tree as the substructure of their models. The random forest and GBDT
models usually construct a number of decision trees. Each tree in the random forest model
receives a sub-dataset as the training dataset, which is sampled randomly with the re-
placement from the whole training dataset. This resampling method is termed the Boot-
strap method in statistics (Friedman et al., 2001). The key difference between the two
models is that the GBDT model focuses more on the trees with larger errors during each
iteration of the training process. Both the random forest and GBDT models have good
ability to reduce the overfitting problem in machine learning and have been widely used
in prediction and/or regression in scientific problems. The inputs of the models in this
study include the solar wind IMF vector, the solar wind dynamic pressure, the local mea-
sured Bx, the Dst index, and the spacecraft locations in the magnetosphere. The Dst
index describes the magnetospheric activity which can be used as an upstream monitor
indirectly. The outputs of the models include the lateral components of convectional ve-
locity: Vy and Vz. The combined training data are randomly extracted from 80% of the
dataset of each mission, and other 20% of the dataset are used as the test dataset. Dur-
ing the training process, we also used 10-fold cross-validation (Friedman et al., 2001) to
help further reduce the potential overfitting, and the optimal hyper-parameters in the
models are obtained by using the grid search method. Because of the parallel comput-
ing ability, the random forest model was trained by using 8 threads simultaneously.

3 Results of Random Forest and GBDT models

The lateral component of magnetospheric convection in the lobes at different down-
tail distances has been shown to correlate with the upstream solar wind IMF direction
(S. Haaland et al., 2008, 2009; Cao, Halekas, Chu, et al., 2020b). The observed magne-
tospheric asymmetries such as dusk-dawn shift of the polar cap boundary and auroral
zone flow speed asymmetry can affect the open field lines in the lobes, which may be con-
trolled by the upstream dawn-dusk IMF (Cowley, 1981). (Tenfjord et al., 2015, 2018)
utilized an MHD model to conclude that the driving mechanism might be due to the up-
stream lateral magnetic flux transferring to the nightside of the Earth’s magnetosphere,
which then affects the plasma convection in the magnetotail lobes. Convection in the Z
direction is strongly influenced by dayside solar wind-magnetosphere coupling (J. Dungey,
1963). This dayside coupling is also reflected in magnetospheric disturbance indices like
e.g., the Dst index, so a correlation between lobe convection and the Dst index is often
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Figure 1. The 50% and 75% confidence intervals of the uncertainties (see the text) for the

random forest and GBDT models respectively for Vy and Vz components of magnetospheric

convection and for the near-Earth and deep magnetotail lobes. The left four panels (a) show the

Vy’s and the right four panels (b) show the Vz’s.

observed (S. Haaland et al., 2009), and a larger Dst implies lower activity and thus lower
convection in the tail region.

Figure 1 illustrates the uncertainties of Vy and Vz convection values predicted by
the random forest and GBDT models, trained using the data set we described in the sec-
ond section. The left four panels (1a) show the predicted Vy values of the random for-
est and GBDT models respectively for the combined data set from the two missions, and
for the ARTEMIS results alone. The blue and orange colors represent the 50% and 75%
confidence intervals (CI), with the uncertainties having corresponding probabilities less
than the upper boundary of the shaded regions (Ruhunusiri et al., 2018). In general, the
uncertainty of positive Vy is smaller than that of negative Vy. The uncertainty of Vy
within 50% CI is relatively small. However, the uncertainty of Vy within 75% CI reveals
somewhat larger asymmetry between positive and negative values, particularly when the
velocity magnitude is larger than 15 km/s. This is probably because the proportion of
the velocities with a large magnitude is much smaller than that of the velocities with a
smaller magnitude, which represent the majority of the convection velocity values in the
magnetotail lobes (S. Haaland et al., 2008). The relatively small proportion of larger ve-
locity values in the data set could result in a larger bias, increasing the uncertainty of
the corresponding range.

The predictions of Vy by the random forest model are better than those from the
GBDT model. For the prediction of the models for the combined data set, the overall
relative deviation of 50% CI’s uncertainty is around 0.25, and that of 75% CI’s uncer-
tainty for the only ARTEMIS data could be up to 0.7-1.0. We will show that the pre-
dictions of these two models are much better than that of a traditional multiple linear
regression model in the next section. The right four panels (1b) correspondingly show
predicted Vz values for the random forest and GBDT models. As the figure shows, com-
pared to the Vy prediction, the overall prediction of Vz by the GBDT model for the com-
bined data set are slightly better than that of the random forest model. However, the
GBDT model’s prediction for the ARTEMIS measurement appears a larger uncertainty
for the positive Vz. Besides, the predictions of Vy and Vz from both models for the com-
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Figure 2. The feature importance of the velocity prediction for the random forest and GBDT

models. The upper panels are for the Vy component of magnetotail convection and the lower

panels are for Vz, respectively for the random forest and GBDT models. The error bar in black

represents the standard deviation of each parameter’s feature importance. The measurement

locations of the spacecraft are represented by the three dimensional coordinates X, Y and Z. The

IMFx, IMFy and IMFz mean the different components of the interplanetary magnetic field. The

Dst index and Bx represent the magnetospheric activity index and the X component of local

magnetic field in the tail lobes. The Pdyn represents the dynamic pressure of the upstream solar

wind.

bined data set are better than those for the ARTEMIS data alone, likely due to a higher
uncertainty in the measurement of magnetotail convection using the ARTEMIS lunar
ion data.

In order to identify which input parameters are more influential in controlling the
plasma convection in the magnetotail, we show the feature importance of each input pa-
rameter for the convection velocity prediction, as depicted in Figure 2. In this study, the
feature importance is defined to be the score decrease of the model when randomly shuf-
fling the values of each single feature, which indicates how much the model is dependent
on that feature. We calculated 10 random shuffles for each parameter and calculated their
average, in order to reduce the potential bias resulting from a single random shuffle. The
results of random forest and GBDT models both reveal that the upstream IMF By has
the highest feature importance for the Vy component, which indicates that it plays the
biggest role of the chosen input parameters in driving the lobe convection in the mag-
netotail, consistent with the previous observations (Ohma et al., 2019) and (Case et al.,
2018, 2020). Next, the feature importances of the local magnetic field and the Dst in-
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Correlation Matrix

Table 1. The correlation matrix between the upstream conditions and the lateral components

of the convection velocity in the northern lobes throughout different tail lobe regions. The col-

ored cells represent the correlation coefficients between each of upstream conditions and the Vy

and Vz of the magnetospheric convection. Red colors indicate larger correlations and blue colors

indicate larger anticorrelations.

dex are also relatively significant, which is probably linked to the fact that physical pro-
cesses in the near-Earth magnetosphere, as indicated by the geomagnetic activity, have
a pronounced effect on physical processes in the downstream region, due to the global
disturbance of the magnetic flux transport through the magnetospheric Dungey Cycle.
In contrast, the geometric locations and local magnetic field in the magnetotail lobes hold
the highest feature importance for the Vz component of the convection. The Vz dynam-
ics may be more strongly affected by the different magnetic field structure between the
near-Earth and far-tail regions. The local measured Bx also plays an important role in
controlling the Vz component, since its sign differs between the two lobes, with the northward-
southward convection generally towards the central current sheet (S. Haaland et al., 2008;
Cao, Halekas, Chu, et al., 2020b). The feature importance of the Dst index and IMFz
could also be comparably important since the geomagnetic activity and the IMFz can
influence the convection velocity Vz’s pattern (S. Haaland et al., 2008, 2009; Ohma et
al., 2019).

4 Correlation Analysis

As described in the previous sections, the magnetospheric convection in the tail lobes
is largely driven by the upstream solar wind conditions and magnetospheric activity. In
this section, we split the two lobes and statistically investigate the correlation between
solar wind conditions and magnetospheric activity, and the plasma convection of the lobes
at different down-tail distances. The correlation calculation is made by restricting the
data between the 10% and 90% percentiles, in order to reduce biases from outliers.

Table 1 shows the correlation coefficients between each of the upstream parame-
ters, the geometric locations of the measurement made in the magnetosphere, and the
lateral velocity components of the magnetospheric convection in the northern lobe mea-
sured by Cluster and ARTEMIS. The correlation between the convection Vy and the IMF
By has the largest value ( 0.5) in the northern lobe. Corresponding, they have the largest
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anti-correlation in the southern lobe. This is consistent with previous observations that
showed that the dawn-dusk convection in the tail lobes is strongly controlled by the IMF
By (S. Haaland et al., 2008; Case et al., 2018, 2020; Ohma et al., 2019; Cao, Halekas,
Chu, et al., 2020b). The correlations between northern and southern lobes (not shown
here) are similar but not exactly symmetric, which is probably due to two reasons: (1)
the magnetic tilt of the Earth results in the structural asymmetry of the two lobes rel-
ative to the incident solar wind; (2) the measurement locations in the magnetosphere are
not equally distributed among different lobes. The IMF By that affects the geometry of
the upstream interaction with the solar wind can influence the asymmetry of the con-
vection in the magnetosphere (Tenfjord et al., 2015).

Compared to the Vy component, the convectional Vz has a relatively significant
correlation coefficient with the geometric location, which is consistent with our obser-
vation of the models. As discussed in previous section, this might be due to the influ-
ence of different magnetic field structures among different tail regions. The IMF Bz and
the Dst index have comparable correlations with Vz in the two lobes, which is proba-
bly linked to the upstream reconnection-related interaction driving the magnetospheric
convection, e.g. Dungey Cycle. In addition, the lateral convection of the lobes is not sig-
nificantly correlated with the upstream solar wind dynamic pressure, which is consistent
with previous studies (S. Haaland et al., 2008, 2009). In the global scale, the north-south
component of plasma convection in the lobes (Vz) has different driving characteristics
from that of Vy. For instance, the response of Vy and Vz to the Dst index appears dif-
ferent between the two tail lobes. The correlation of the geometric locations of the mag-
netosphere with Vz has also a relatively higher value compared to that with Vy, which
might be because the northward-southward convection is affected by the variation of mag-
netic field structure from the near-Earth to the deep tail regions.

Finally, we calculated the correction between the predicted and test velocities for
the two machine learning models and the multiple linear regression model. The corre-
sponding correlation for predicted and test Vy components of random forest is 0.76, and
that of GBDT is 0.75, compared to a much smaller value of 0.23 from multiple linear re-
gression. The corresponding correlation for predicted and test Vz components of ran-
dom forest is 0.78, and that of GBDT is 0.77, compared to a value of 0.43 from multi-
ple linear regression. The comparison of the correlation coefficients between these dif-
ferent models confirms that the machine learning models significantly outperform the
multiple linear regression.

5 Summary

In conclusion, we investigated the potential driving mechanism of the plasma con-
vection in the magnetospheric lobes with respect to upstream solar wind conditions and
geomagnetic activity, by utilizing two types of machine learning models: random forest
and GBDT. We used data from the ARTEMIS and Cluster missions, and from the OMNI
dataset. This study indicated that the machine learning technique could be a useful tool
to predict the response of the magnetospheric convection in the tail lobes to the upstream
conditions, and revealed the feature importance of each potential driving parameter, with
results that appear consistent with previous studies of the convection of the tail lobes
(S. Haaland et al., 2008, 2009; Ohma et al., 2019; Cao, Halekas, Chu, et al., 2020b). The
ARTEMIS-Cluster-OMNI data-driven models demonstrate that the convection through-
out the near-Earth and far-tail regions is largely controlled by the upstream solar wind
parameters and as reflected also in magnetospheric activity indices. The IMF By val-
ues have significant correlations with the corresponding component of the convection in
the tail lobes, as predicted. The geometric locations in the magnetosphere affect the Vz
component more significantly than the Vy component. In addition, the Vz value in the
tail lobes has a comparable response to the IMF Bz and the Dst index, which may in-
dicate that the upstream solar wind driving mechanism consistently influences the ge-
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omagnetic environment in the near-Earth magnetosphere and the downstream tail re-
gions. This is probably associated to the global plasma dynamics, e.g. Dungey Cycle.
How the dynamics of other magnetospheric regions (e.g. plasma sheet or current sheet)
respond to the upstream solar wind should be addressed in future studies, as it may help
build a more complete picture of the solar wind – terrestrial magnetosphere coupling pro-
cesses. The method of using machine learning techniques to study the magnetospheric
convection could potentially be applied to the global magnetospheres of the Earth (Liu
et al., 2012) and other planets such as those of Mercury, Saturn, Jupiter, Uranus and
Neptune (Cao & Paty, 2013, 2014, 2015, 2016, 2017b, 2017a, 2018, 2021) and the non-
global magnetic environment such as that of Mars (Chu, Girazian, et al., 2021).
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